본문 바로가기

합성곱계층2

[비전공자용] [Python] CNN(합성곱 신경망) - 풀링 계층 구현 이번 포스트에서는 지난 포스트(CNN-합성곱 계층 구현)에 이어서 2020/07/28 - [Computer Science/Deep Learning] - [비전공자용] [Python] CNN(합성곱 신경망) - 합성곱 계층 구현 CNN에서의 풀링 계층을 Python으로 구현해보려 합니다. 여기서는 코드를 구성하는 것만 다루기 때문에 개념적으로 공부하고 싶으신 분들은 아래 포스트를 참고해주세요. 2020/07/10 - [Computer Science/Deep Learning] - [비전공자용]합성곱 신경망 (CNN) - 합성곱 계층 & 풀링 계층 2. 풀링 계층 구현 합성곱 계층과 마찬가지로 풀링 계층에서도 im2col 함수를 사용해서 입력 데이터를 전개합니다. 하나 차이점이 있다면, 풀링 계층에서는 채널 .. 2020. 7. 28.
[비전공자용]합성곱 신경망 (CNN) - 합성곱 계층 & 풀링 계층 합성곱 신경망 Convolutional Neural Network, CNN은 이미지 인식과 음성 인식 등 다양한 곳에서 사용됩니다. 이제부터 CNN에 대해서 낱낱이 살펴보도록 합시다. # CNN 전체 구조 지금까지 공부했던 신경망과 CNN이 특별히 다른 점은 CNN에는 합성곱 계층 Convolutional layer 과 풀링 계층 Pooling layer 이 새롭게 등장한다는 점입니다. 지금까지 본 신경망은 인접하는 계층의 모든 뉴런과 결합되어 있었습니다. 이를 완전연결 fully-connected라고 하고, 완전히 연결된 계층을 Affine 계층이라고 합니다. 완전연결 신경망은 Affine 계층 뒤에 활성화 함수를 갖는 ReLU/Sigmoid 계층이 이어져 있습니다. 위 그림에서는 'Affine-ReL.. 2020. 7. 10.
반응형